近日,百济神州KRAS G12C抑制剂专利(WO2021058018)公开,专利最早申请于2019年9月,涉及KRAS G12C突变蛋白抑制剂,可用于治疗KRAS G12C介导的疾病。
百济神州专利报道通式结构如下:
部分实施例结构如下:
Example No. | IC 50 (nM) | Example No. | IC 50 (nM) |
1 | 3280 | 29 | 2.42 |
2 | 46000 | 30 | 15 |
3 | 23700 | 31 | 301 |
5 | 56.1 | 32 | 39.5 |
6 | 27.7 | 33 | 22.4 |
7 | 174 | 34 | 505 |
8 | 495 | 35 | 256 |
9 | 265 | 36 | 238 |
10 | 415 | 37 | 27.9 |
11 | 170 | 38 | 1570 |
12 | 379 | 40 | 1510 |
15 | 492 (P1) ; 5.27 (P2) | 41 | 77.2 |
16 | 5650 (P1) ; 256 (P2) | 42 | 9980 |
17 | 2200 (P1) ; 949 (P2) | 44 | 9010 |
18 | 1560 | 45 | 12.6 |
19 | 976 | 46 | 172 |
20 | 2880 | 47 | 102 |
21 | 92.5 | 50 | 6.16 |
22 | 9.63 | 51 | 16.1 |
23 | 28.1 | 52 | 8.51 |
24 | 101 | 53 | 14.9 |
25 | 3.27 | 54 | 639 |
26 | 1080 | 55 | <5.1 |
27 | 3720 | 56 | 941 |
28 | 178 |
”
RAS is one of the most well-known oncogene. In human, three RAS genes (HRAS, KRAS and NRAS) encode four highly homologous RAS proteins (HRAS, KRAS-4A, KRAS-4B and NRAS) . RAS proteins are small GTPases, they function as binary molecular switches that involved in transduction of extracellular growth and differentiation signaling.
RAS generally cycles between a GDP-bound “off” state and a GTP-bound “on” state. This cycle is regulated by several factors. Guanine nucleotide exchange factors (GEFs) , including SOS1 and SOS2 facilitate the exchange and formation of GTP-bound RAS. While, GTPase-activating proteins (GAPs) , for example NF-1 promote the hydrolysis of GTP and therefore turn RAS back to GDP-bound inactivate state (Kessler et al, PNAS, 2019, 116 (32) : 15823–15829) . Once bound to GTP, RAS initiate conformational changes in two specific regions Switch 1 and Switch 2, which allows engagement and activation of downstream effector proteins to initiate a cascade of intracellular signaling pathways. These effectors include RAF–MEK–ERK and PI3K-AKT–mTOR pathways, both of which have crucial roles in regulating cell proliferation, differentiation and survival (Cox et al., Nature Reviews Drug Discovery, 2014, 13: 828-851) .
RAS mutations have been identified in around 30%of human tumors. These mutations occur frequently as single-base missense mutations in codons 12, 13 or 61, resulting in stabilization of the activated GTP-bound RAS form and constitutive activation of RAS downstream signaling pathways. KRAS is the most frequently mutated RAS in cancer, account for 85%of all RAS-driven cancers, followed by NRAS (12%) and HRAS (3%) . KRAS mutation has been detected in around 95%of pancreatic ductal adenocarcinoma, 50%of colorectal adenocarcinoma and 30%of lung adenocarcinoma. The majority of KRAS mutations occur at residue 12, and the mutation type varied in different cancers. In colon cancer and pancreatic cancer, the predominant KRAS mutation is G12D (glycine to lysine) , while in non-small cell lung cancer (NSCLC) , nearly half of KRAS mutations are G12C (glycine to cysteine) (Cox et al., Nature Reviews Drug Discovery, 2014, 13: 828-851) .
Based on the critical role of RAS in cell proliferation and its high mutation rate in human cancers, RAS has long been considered as a therapeutic target for many cancers. However, despite several decades of research effort, no anti-RAS small molecular has been clinically approved. The main reason is that druggable pockets on the surface of RAS is lacking (Papke et al., Science, 2017, 355: 1158–1163) . Recently, more and more studies suggested that RAS might be able to be drugged with small molecules. Several inhibitors that directly target KRAS G12C are under the investigation (Patricelli et al, Cancer Discovery, 2016, 6 (3) ; 316–29) (Fell et al, ACS Med. Chem. Lett. 2018, 9, 12, 1230-1234) .
Small molecule selectively inhibitors of KRAS are being developed to prevent or treat diseases, For example, WO2015/054572A1 provides compounds having activity as inhibitors of G12C mutant RAS protein. WO2016/164675A1 and WO2017/015562A1 disclose substituted quinazoline compounds as KRAS G12C inhibitors. Compounds with KRAS G12C inhibitory activity are further reported by WO2014/152588 A1, WO2016/049524 A1, WO2016/168540 A1, WO2017/058728 A1, WO2017/058792 A1, WO2017/058805A1, WO2017/058915 A1, WO2017/087528 A1, WO2018/064510 A1, WO2018/068017 A1, WO2018/119183 A2, WO2018/206539 A1, WO2018/218069 A1, WO2019/051291 A1, WO2019/055540 A1, WO2019/137985 A1, WO2019/141250 A1, WO2019/150305 A1 and WO2019/155399 A1. In particular, WO2019/110751A1 discloses tetracyclic compounds as inhibitors of G12C mutant Ras protein as anti-cancer agents.
Thus, new inhibitors that selectively target mutant KRAS with high efficacy and safety are still highly desirable. Continued efforts on developing KRAS G12C inhibitors will arise new therapeutic way for KRAS G12C driven cancers.
“
评论