跳至主要内容

博文

目前显示的是标签为“专利”的博文

科伦博泰公开STING激动剂专利——《苯并噻吩类化合物及其制备方法和用途 发明领域》

 近日, 科伦博泰 公开 STING激动剂 专利——《苯并噻吩类化合物及其制备方法和用途 发明领域》,该专利申请于 2019年4月30日 ,这类化合物对STING信号通路具有很强的激动作用,因此 具有更好的肿瘤治疗效果 。本发明的化合物还具有多种优异性质,例如良好的物理化学性质(例如溶解度、物理和/或化学稳定性)和良好的安全性。 “ STING(Stimulator of interferon gene,干扰素基因刺激蛋白)也被称为TMEM173、MPYS、MITA或者ERIS,是免疫反应中重要的信号分子。当STING受到配体(例如源于细菌的环二核苷酸(cyclic dinucleotide,CDN))刺激活化时,会上调IRF3和NF-κB信号通路。具体而言就是活化的STING招募细胞质中的TANK结合激酶(TBK1),介导TBK1对IRF3的磷酸化,从而导致干扰素和其它细胞因子的生成。干扰素是一组具有多种功能的活性蛋白,具有调节免疫功能、增强疫苗作用、抗病毒、抑制肿瘤细胞增殖、诱导肿瘤细胞凋亡等功能(Nature,2008,455,674-678;Science Signaling,2012,5,ra20)。此外,STING蛋白还参与肿瘤免疫、自身免疫性炎症、自噬等多种病理和生理过程。STING介导的I型干扰素信号通路是肿瘤特异性T细胞的激活和肿瘤浸润性淋巴细胞浸润的关键步骤,而在肝细胞癌、胃癌及结直肠癌等多种肿瘤组织中,STING低表达促进肿瘤免疫耐受和/或免疫逃逸的发生。大量研究表明,STING激动剂具有显著抗肿瘤活性。例如,STING激动剂(ADU-S100)在小鼠模型中能够抑制二次接种移植瘤的生长,长时间逆转肿瘤免疫耐受现象,抑制肿瘤复发。 目前,已公开的STING激动剂主要是具有环二核苷酸类似物结构的化合物。如MIW815(ADU-S100)已进入临床1期, 另外,陆续有研究机构公开了非环二核苷酸结构的STING激动剂。WO2018067423公开了一类苯并噻吩类化合物,作为STING激动剂,其用于细胞增殖相关的疾病(如癌症)的治疗。WO2018234805、WO2018234807和WO2018234808也公开了一类杂环化合物,其可以调节或激活人STING蛋白,用于多种疾病(包括癌症)的治疗。 因此,STING激动剂作为药物在医药行业具有良好的应用前

恒瑞公开“KOR激动剂与MOR激动剂联合在制备治疗疼痛的药物中的用途”专利

本发明属于医药领域,涉及一种KOR激动剂与MOR激动剂联合在制备缓解和/或治疗疼痛的药物中的用途。 疼痛指一种人的官能性或实质性的感受。疼痛的分类较为复杂,按照病因分类主要分为外伤性疼痛,病理性疼痛,代谢性疾病引起的疼痛,神经源性疼痛,组织、器官畸形引起的疼痛,心理性疼痛,复合因素引起的疼痛;按照病程分类主要可分为短暂性疼痛,急性疼痛,慢性疼痛;按照疼痛程度分类可分为微痛,轻痛,甚痛,剧痛;按照解剖部位主要可分为头痛,颌面部痛,项枕部疼痛,颈肩痛,上肢痛,胸部痛,腹痛,腰腿痛;按照疼痛发生部位和引起原因等可分为末梢性疼痛,中枢性疼痛,心理性疼痛。疼痛性疾病的病因复杂,表现的症状各异,患者对疼痛耐受的程度和治疗的反应个体差异很大,目前临床常用治疗疼痛的药物主要有抗炎镇痛药,麻醉性镇痛药,局部麻醉药,抗癫痫药,抗抑郁药物等,虽然用于镇痛的药物较多,但是依然存在着便秘、呼吸抑制、镇静和嗜睡、呕心和呕吐、急性中毒、身体依赖和耐药性、精神依赖等问题。 阿片类药物是临床常用的镇痛药物,尤其是重度疼痛和晚期癌症患者的治疗中占据重要位置,主要通过作用于阿片类受体产生镇痛作用。阿片类受体是G蛋白偶联受体超家族的一员,参与镇痛、抑制肠胃蠕动、呼吸抑制、心肌保护、免疫反应等多种生理活动。一般认为阿片受体可以分为4种亚型:μ阿片受体(MOR),δ阿片受体(DOR),κ阿片受体(KOR)和阿片样受体-1(ORL-1)。研究发现,MOR受体与吗啡肽1的结合能力最强,因此临床上使用的阿片类镇痛剂主要为MOR激动剂,有吗啡、曲马多、芬太尼、羟考酮等,但是长期使用该类药物会造成镇痛耐受,依赖和成瘾等严重副作用,目前正在进行III期临床的MOR激动剂有Trevena Inc公司正在开发的TRV-130。WO2017063509公开了一种新的MOR激动剂,其结构如下所示: WO2012129495公开了一种结构类似的MOR激动剂。 基于对阿片类受体各亚型结构与功能认识的研究,打破了以前一般认为针对单一阿片受体的高选择性配体会有高活性低毒副作用,现在更多研究发现高选择性激动剂反而会增强副作用。研究认为不同亚型的阿片受体之间存在不同程度的结构或功能上的相互作用,共同参与镇痛等生理活动。Fujita-Hamabe等人的研究证实(Journal of Pharmacy and Pharma

正大天晴公布新型抗乙肝用核衣壳抑制剂专利及部分实施例结构

本申请主张如下2个优先权:首个中国申请日2017年11月16日;第二个中国申请日2018年04月16日。 据WHO统计,目前全世界约有2.4亿人感染HBV(乙型肝炎病毒),每年直接或间接地导致约68万人死亡。中国是乙肝大国,感染人口七千多万。长期感染HBV可导致肝衰竭、肝硬化和肝癌等恶性疾病。(World Health Organization,Hepatitis B:World Health Organization Fact Sheet(2016).) 目前被许可用于治疗慢性乙肝的常规药物只有核苷(酸)类化合物和干扰素两类。核苷(酸)类药物,如拉米夫定、恩替卡韦、替诺福韦(酯)等,可以抑制HBV DNA复制,但这类药物并不能清除cccDNA,停药后往往出现病情反弹。患者需长期用药,部分患者容易出现耐药现象。干扰素类药物能部分激活病人的免疫系统,通过人体自身免疫作用抑制乙肝病毒,但这类药物副作用较大,患者耐受性不足,更为严重的是不同人群对干扰素治疗的应答率存在显著差异,但总体上看应答率较低(通常低于30%)(Nat.Rev.Gastro.Hepat.8(2011),275-284)。 HBV感染的病人,在宿主的肝细胞核内形成稳定的共价闭合环状DNA,即cccDNA,作为HBV不断复制的模板。所有次基因组的RNA(sgRNA)和前基因组的RNA(pgRNA)均由cccDNA转录形成。出细胞核后,sgRNA翻译成X蛋白和其他三个包膜蛋白,pgRNA翻译成核心蛋白和病毒聚合酶。pgRNA与核心蛋白在聚合酶的作用下发生自组装,形成包裹了核衣壳的RNA。在核衣壳内,pgRNA逆转录成负链的DNA,并由此进一步合成出DNA正链,形成rcDNA。核衣壳包裹的rcDNA一方面重新脱壳进入细胞核,进一步使cccDNA扩增;另一方面重新与包膜蛋白结合,通过内质网释放出细胞,形成新的HBV。在HBV的复制循环中,核衣壳的的合成是HBV基因组复制过程中的关键一步,病毒DNA的合成只能特异性的发生在核衣壳的内部。核衣壳的组装是限制HBV多样性的一个进化制约过程,即使对细微的分子干扰也非常敏感。对于开发新的针对不同乙肝病毒基因型和耐药菌株的疗法,作用于核衣壳的合成和降解过程的靶标极具前景。一些与核衣壳相关的抗HBV化合物已被报道。NVR 3-778(WO 2015109130A1

Aclaris用于治疗自身免疫疾病的MK2抑制剂专利《吡啶酮-吡啶基化合物及其用途》

 2013年,Aclaris(阿克拉里斯医疗)率先在美国申请吡啶酮-吡啶基化合物专利,2014年该专利进入中国,2018年专利公开,2021年初尚处于实质审查阶段。 在比较抑制剂在阻断p38/MK2相对于p38/PRAK诱导HSP-27衍生的肽底物的磷酸化的效能的酶测定中评价了化合物的新的MK2底物选择性抑制机制,使用p38α/MK2和p38α/PRAK级联测定形式评价了化合物对激活的磷酸化p38α的抑制能力。 “ 本公开内容提供了用于治疗p38激酶介导的疾病(例如淋巴瘤和自身炎症性疾病,包括类风湿性关节炎)的甲基/氟‑吡啶基‑甲氧基取代的吡啶酮‑吡啶基化合物和氟‑嘧啶基‑甲氧基取代的吡啶酮‑吡啶基化合物,其具有式(I)的结构:,其中R1、R2、R3、R4、R5和X如详细描述中所定义;包含至少一种所述化合物的药物组合物;以及使用所述化合物用于治疗p38激酶介导的疾病的方法。 丝裂原活化蛋白激酶(MAPK)是使用磷酸化级联反应传递和传送外部刺激以产生对环境协调的细胞反应的保守的酶家族。MAPK是调节诸如基因表达、有丝分裂、分化及细胞存活/细胞凋亡的细胞活性的脯氨酸引导的丝氨酸/苏氨酸特异性蛋白激酶。迄今为止,已鉴定了四种不同类别的哺乳动物MAPK:细胞外信号传导激酶(ERK1和ERK2)、c-jun N末端激酶-1(JNK1-3)、p38MAPK(p38α、p38β、p38γ及p38δ)及ERK5。通过协同的双特异性MAPKK对TXY激活基序中Thr和Tyr残基的双磷酸化作用激活MAPK,其中在ERK、JNK和p38MAPK中,X分别为Glu、Pro和Gly。MAPK彼此60-70%相同,但它们的激活环序列和大小方面存在差异。激活环邻近酶活性位点,且激活环的磷酸化使得酶重新定位活性位点残基至底物结合和催化的最佳方向。MAPK的下游底物包括丝裂原活化蛋白激酶激活的蛋白(MAPKAP)激酶和转录因子,其磷酸化直接或间接地调节几个点的基因表达,包括转录、核输出及mRNA的稳定性和翻译。MAPK激活的细胞影响包括炎症、细胞凋亡、分化及增殖。 不同的基因编码人体内的四种p38MAPK激酶:p38α、p38β、p38γ及p38δ。在4个亚型间观察到了显著的氨基酸序列同源性,所述亚型具有60%-75%的整体序列同一性,在激酶结构域内具有>90%的同一性。观察到了组织选择性表达